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1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na = N — a: number of non-anomalous scatterers.

fi= f,ﬂ + Af; +if]" = f] + if]": scattering factor of the jth atom.
f’ is its real, f” is its imaginary part. The thermal factor is
included.

2:a’ Ena’ 2:N = Z (f;a +f}//2)’
extended to a, na and N atoms.

where the summation is

N

F* = |F"|exp(ig") = F,, = Y_ f;exp(27hr))
=

F = |F;|exp(ig]) = Y_ f; exp(2mihr))

N
F~ = |F"|exp(ip”) = F_, = )_f;exp(—2mihr))

=1
F; = |F; |explig;) = Y. f;exp(~2ihr))

Aano = |F+| - |F7|

2. Introduction

The increasing power and tunability of synchrotron beamlines
have strongly improved the efficiency of the MAD (multiple-
wavelength anomalous dispersion) method for solving the
phase problem in protein crystallography. The technique
exploits the differences among structure-factor moduli
generated, at wavelengths around the absorption edges, by the

The probabilistic approach provides a very simple and efficient formula for
estimating structure-factor phases.

anomalously scattering atoms present in the unit cell
(Hendrickson & Ogata, 1997; Smith, 1997). The first step of
the procedure aims at locating the anomalously scattering
atoms (Terwilliger et al., 1987; Miller et al., 1994; Sheldrick &
Gould, 1995). The second step tries to determine the phase
values on assuming the partial structure of the anomalously
scattering atoms as prior information. Previous probabilistic
approaches consider MAD data as special MIR (multiple
isomorphous replacement) cases (Blow & Crick, 1959;
Terwilliger & Eisenberg, 1987) or adapt Karle’s (1980) alge-
braic analysis to a probabilistic description (Pahler et al., 1990;
Chiadmi et al., 1993). This paper applies the rigorous method
of the joint probability distribution function to the two-
wavelength case on assuming that the anomalously scattering
atoms are located. The paper follows:

(a) a contribution by Giacovazzo & Siligi (2001a), from now
on paper I, where the joint probability distribution method has
been applied to the SAD (single-wavelength anomalous
dispersion) case, on the assumption that the positions of all or
a part of the anomalous scatterers have been found via one of
the current methods;

(b) a contribution by Giacovazzo & Siligi (20010), from
now on paper II, where the MAD case has been treated for
symmetry-restricted reflections.

The two-wavelength case is crucial for MAD data treat-
ment: the algebraic aspects have been studied by several
authors (i.e. Singh & Ramaseshan, 1968; Unangst
et al., 1967; Bartunik, 1978; Cascarano et al, 1982; Klop
et al., 1989). The probabilistic aspects of this case are here
investigated: the joint probability distribution functions
P(Ff, Ff,Fy, F5|FF, F;) will be derived, from which the
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marginal distributions  P(g; ||FT |, |F5 1, |Fy |, |F5 |, Ff, F))
will be obtained. The first application of the conclusive
formulas are also described.

By analogy with the probabilistic approach described in
papers I and II, the positions of the non-anomalous scatterers
will be the primitive random variables. For each wavelength,
we will make the following assumptions:

(a)

F'=F/+F,+u"=F +F/, 1)
where F is the structure factor corresponding to the non-
anomalous scatterers, all supposed non-located. Furthermore,
ut = |u|" exp(i6T) represents the cumulative error arising
from errors in measurements and in the substructure model of
the anomalous scatterers: it is incorporated into F[ =
Fi +nut.
(b) Equivalently,

F-=F +F,+un =F, +F,, )
where F, = F,, + u™.

(¢c) F,, F,., ut, are uncorrelated with each other. The same
assumption is made for (u*) = (u~) = 0.

(d) {uT ™) = 0. This implies that errors on F* and F~ are
uncorrelated. Accordingly,

(IFTP) = Ff P+ Z,, + ('),
(IF71PY = |F, P+ Z,, + (I 7).
(e) () = (uymy) = (uiuy) =0.

In the absence of any prior information, all the assumptions
(a)-(e) are quite reasonable. In practice, the errors are not
uncorrelated, whether because of possible systematic errors in
measurements or because of unavoidable errors in the
assumed structural model of the anomalous atoms.

As in papers I and II, we will normalize the structure factors
with respect to the unknown part of the structure. Accord-

ingly,
Rexp(igh) = (AT +iB") = F* /Y7
Gexplig ) = (A" +iB)=F /3,7,

where R and G are the pseudo-normalized moduli of |F*| and
|F~|, respectively, and

[~
AT = | Y (f/ cos2thr; — f" sin 27hr;) + || cos 9+:|/ S
=1
B 12
B* = | Y _(f/ sin2rthr; + f/ cos 2hr;) + |u*| sin 6F /an, ,
=1
[ 1/2
A™ = | > (ff cos2rhr; + f" sin 27thr;) + [11™ | cos 6~ /Zné ,
=1
B = Z( —f; sin2rthr; + f cos 2thr;) + || sin 6~ :|/Zl/2.
Equivalently,

R, exp(ip)) = (A] +iB}) = FF/x!/?

G, explip,) = (A, +iB,) = F, /5,
R explip)) = (A} +iB) =F/%)}

ha >

_ _ 1/2
G, explip,) = (A, +iB,))=F, /T

ha >

where
A =[R(EFD + 1wt cos 011/,
By =[J(F) + |u"|sin6"]/ %7,
A, =[R(F,,) + In |cos071/Z)7,
B, =[3(F,,) + | |sin6~ /X2,

M(...) and J(...) stand for real part of and imaginary part of,
respectively.

3. The joint probability distribution
P(F{ . F; . F . F |F. Fh. Fpy. Fp)

Under the assumptions spe01ﬁed in §2, the characteristic
function

Cluf, uz, uy uy Vi, v, Vi, v3)
(in short C) of the distribution
P(AT,AS, AT, A;, BT, B, By, By |AL,....B,)

(in short P) may be calculated, where uf, uf, ..., vy, vy are
carrying variables associated with Af, A, ..., By, Bj,
respectively. We have

C = (expiuf AT +uf AT + ...+ v, B)))
~ expli(u; A+ + u;Al_lE +uy Aal tu, Ay + ...+ v, Byl
2

LYl @ ) e 4 )

j=1

Lyt + +,,— 4, - +.,— +.,— — -
_i(uluz +ujur +ufuy +uur +uuy +uiuy)

X exp {—

—LIvE — VT —vivE —vivE —vivs - >}
where
=14 (o}), e, =14 (0,),
(UW = (K Y/ (0, = ((Mf)z)/zif;2~
Then
—00 +oo
P~ [ ... [ exp{—z[ul(A++A b ut(AF — A%

+...+v2(B; — By)]

[+(u+2+v+2)+e (u

MN

i) 1 + v )]

-
I

Tud Fufuy +uiuy + ey +usuy 4 uiuy)

+yt _ vty — vty
Vivy —Vivi — V]V,

B= D=

~ o~
<
=3

—Vivi —ViVy
—i—vlvz)}du1 .o.dvy. 3)

Define
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=@/, u = @fe)) P,
= 2/}, = (2/e))"*v}.
Then (3) may be written as
—00 +o0 o o .
= (2n) "2 efererey) [ ... [ exp(—iTU —iUkU)dU
—00 —00
= *(efeferey)  (detk) "/ exp(— Tk 'T), (4)
where
U=/ u u uy v, ...,v3),
T =[(AT — A7@/eD)' . (By — Bp)(2/er)' ],

1 (efe)™? (efer)™? (efer)™?
(efe)™'? 1 (exer)™? (e3e)7'?
(efer)™* (eser)™'? 1 (eye;)™1?

L | e () (ere) ™ 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(efef)™ 2 —(efer) ™2 —(efer)™?
(efed)'? 1 —(eFer)™'? —(eFey) '
—(efer)™? —(efer) 1 (ere;)?
—(efey) ™ —(efe) ™ (erey) 2 1
0
-|% )

Q; and Q, are 4 x 4 matrices.
In accordance with the results of Appendix A, we write
down the explicit form of (4):

2
Praiqtexp (—a  { L hlAS — AL+ (B) = BLY)
i=1

+ i Ml(A7 — AL + (B — Bu)]

+ zxu[(A+ ATAS — AL) + (Bf — BY)(By — B))]
+205[(AT — AZ)AT — AL) — (Bf — Bj)(By — B)]
+20,[(AT — AJ)(A; — AL) — (BY — BY)(B; — By,)]
+2A5[(A — ARNAT — Ay) — (B — BL)(By — B,)]
+20u[(AT — ALNA; — AL) — (B — BR)(B; — By)]

+ 27 — A)AT — Ag) — (BT — Bo)(B; — B} ).

(6)

The change of variables

+ _ +
A = R;cos @],

+ _ +
Aai - Rai COos wah

A; = G;cosg;,
A, = G,cosgy,

reduces (6) to

2

P~ —ln(Rc)exp( ‘1{Zkii[Rf+Gf+Rﬁi+G§i

—2R;R,; cos(¢” — @) — 2G,G,; cos(¢; —¢,)]

+ 2A1[R, R, cos(¢f — @) — Ry R, cos(gi — @)
— RyR, cos(¢) — @) + R,y R, cos(¢y —¢5)]

+ 245[R, Gy cos(¢) + ¢1) — R, G, cos(¢f + ¢,)
— GyR,; cos(@; + @) + Ry Gy cos(¢+¢5)]

+ 2014[R, G, cos(¢ + ¢7) — R G5 cos(¢y + ¢,)
— GyR, cos(¢; + @) + R, G, cos(¢f14¢2)]

+ 2A5[R, Gy cos(; + @1 ) — Ry Gy cos(py + ¢,)
— G R, c0s(¢7 + ¢1) + R, G,y cos(@+¢,1)]

+ 2204 [R, G, cos(gy + ¢5) — Ry Gy c08(3 + 93)
— GyR,, c08(¢; + @) + R,G,p cos(¢0402)]
+243[G, G, cos(¢; — ¢,) — GG, cos(¢) — ¢,0)

~ GG,y cos(gy — ¢i) + GuGcosign —9l}). ()

4. The conditional probability

P!, 03, 97,97, |Es, E4u R, G, i =1,2)

In order to derive the main property of the joint probability
distribution (7), we reconsider (6). Since o? = (u?)/ >y is
usually quite a small quantity, we can 1ntr0duce the following
approximation:

Ay =— ()\12 +A5+ )“14)’
Az = — ()*13 + s+ )L34)’

Ay == (A + Ags + Agy),
Mag = = (Mg + Agy + A39).

Then (6) may be rewritten (see Appendix B) as

P 77_461_1 exp ( + (kiz/Q){[(Ai— - A;—) - (A;i_l - Az—z ]2
+[(Bf —B3) — (B — BT} + (A /(AT — A))
— (AL — ALY +(Bf + By) — (B + B}
+ (/AT — AY) — (A, — AT + (B + BY)
— (B + B} + (s /(AT — A7) — (Af, — AP

+[(BS + By) — (B + B} + (g /(AT — A)
— (AL —ART +(BF + By) — (BL + B}
+ ()‘34/Q){[(A1_ - Az_) - (Aal - az)]
+[(By —B;) — (B, — Bp)I'}). (®)

We observe:

(a) Equation (8) is maximized when the differences
(B; — B;) are equal to the corresponding differences among
structure factors of the anomalous atom substructure. In a
more appealing form, (8) may be rewritten as
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Px n_4q_1 expl(An/QIE] — Ey) — (E;

+ (is/DIES — Er™) — (Egy — Ea_l*)|2

+ Gua/DIET — Ey™) = (Ejy — ENI

+ (s /DINES — ET) — (Ej, — E;*)|2

+ O/ DIES — Ey*) — (Efy — EZI

+ Gua/DNET = Ey) — (Eqy — ER)P],

where E* stands for the complex conjugate of E. The above

equation perfectly complies with expectations. At the same

time, the expectations work in the formula as a lack-of-closure
criterion.

(b) Each term is modulated by a sensitive weight, correlated

with the errors in the anomalous atom substructure and/or in
measurements. For example, the contribution of the difference

—Ep)I’

[(AT = AD) = (A7 — ADF +[(Bf = BY) — (Bj; — BR)F
to the probability density P will be large if the product 072052
is large, in agreement with common sense.

The conditional probability
P(ol, ¢F 01 95 |E R, G i = 1,2)
is then

Plef 93 91,05 1..)
~ L7 exp{—2(A1,/q)[R R, cos(¢f — ¢7)

— R{R,; cos(¢f — ¢5) — RyR,,; cos(@y — @3]
= 2(A13/ IR, G, cos(¢y +¢r)
— R G, cos(¢) + @) — G R, cos(g; + ¢1)]
—2(14/ IR, G, cos(¢f + ¢3)
— R,G cos(¢f + ¢0) — GyR,; cos(¢; + @3]
—2(Ay /@R, G, cos(@y + ¢r)
— R,G,; cos(¢;y + @) — G R, cos(g) + ¢)]
= 2(Au/ IR, G, COS(‘P; +)
— R,G 5 c08(¢; + @) — GyR 5 c0s(9, + 9]
= 2(A34/ NG, G, cos(pr — @)
— GGy cos(pr — @) — GGy cos(@; — @1)]
— /P12 + Az + MR R, cos(pf — @)
+ (Mip + Aoz + X)) RyR 5 cos(@y — ¢)]
= 2/Pl(ri3 + Ay + 234)G G,y cos(@r — @)

+ (his + Aoy + 234)G, G cos(@; — @)1} ©)
where L is a scaling factor which does not depend on the
phases.

Since
3" Cpcos(¢ + o) = Z cos(p + &),
3
where
2 2
7' = |:Z C, cosa,{| + [Z C, sin Olk]
k k
and

tan& = |:Z C, sinaki|/|:2 C, cosaki|,
3 3

we can rewrite (9) in a form more useful for practical appli-
cations:

Plef. 93 o1 951 )
~ L™ exp{—(2/q)[1, R R, cos(¢ — ¢3)
+ 1i5R, Gy cos(¢f + @) + A4 R, G, cos(¢f + ¢7)
+ 3R, Gy cos(¢f + @) + AR, G, cos(¢3 + ¢3)
+ 434G, G, cos(¢; — ;)] + (2/@)[R, Z{ cos(pf — &)
+ R, Z; cos(p) — &) + G Zy cos(gy — &)
+ G,Z, cos(p; — &)1} (10)

where

Zfr cos §1+ = [A2R,; cos (ﬂ:z + 213G, cos @, + A4 Gp COS @,
— Az + A3 + AR, cos %J:rl]v

Zysing =[+A,R,sin @ — hi3Gyysing, — A, Gpsingy,,
= (Ap + A3 + AR, sin ‘P;rl],

Z; cos §2+ = [A2R,; cos (ﬂ:l + 253G, €08 @, + Ay G COS @,
— (A2 + g3 + Ay)R, cOS %J:rz]v

Zy singy = [+ AR, sin gy — k3G, sing, — 2y, G,p sin gy,
= (A1z + Ag3 + AR, sin ‘P:zrz]’

Z; cos& = [A3R, cos (ﬂa+1 + AR, cO8 ‘ﬂ:z + 234G cO8 ¢,
— (A3 + g5 + A39) Gy cOS @],

Zy siné; = [— A;3R,; sin ‘/7::1 — AR, sin ‘P;rz + 234G, sin @,
— (A3 + Ay + 230)Gy singy ],

Z; cos&, = [AyR, cos §0a+1 + AR, cOS ‘/’:2 + 234G,y cOS @,
— (Mgt Aoy + A30) G cos @),

Z, sin§;, =[— AR, sin ‘P;Ll — AR, sin ‘P;rz + 234G, Sin @y,
— (Mg + Ay + 239) Gy sin @]

The coefficients Z", Z7, &, & do not depend on the phases
gol-*, ¢;, for i,j =1, 2: they take into account the correlation
among the phases ¢, and the phases ¢, arising from the
anomalous scatterers substructure. Equation (10) is the main
result of this paper.

5. The conditional probability
P(¢i»—|E:t’ E;i» Ri» Gh i = 1, 2)
The accurate derivation of P(¢] |E}, E;;, R;, G;, i = 1,2) from

(10) requires the progressive integration over ¢;, 5, 7. The
first integration gives rise to

P(ei. 93, 911
~ L™ exp{—(2/q)[1, R, R, cos(¢) — ¢3)
+ 1i3R, Gy cos(@f + @) + A3 R, G, cos(¢3 + ¢7)]
+ /@R Z{ cos(pf — &) + R, Z; cos(py — &)
+ G Zy cos(p; — &)12my(S), (11)

where [, is the modified Bessel function of order zero and
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§? = AGI ML RIHALRS + A3,Gh + Z52
+ 2014A0 Ry R, cos(pf — ¢7)
+ 2414234 R, G, cos(@f + ¢7) — 244 R, Z5 cos(gf + &)
+ 2234434G R, cos(@y + ¢3) — 240 R, Z; cos(¢y + &)
—2234G,Z; cos(py — &)

The integration of (11) over ¢; requires the approximation
1(S) ~ exp(S/4). (12)

Equation (12) is also necessary for the next integration over
@5 . The final result is the probability density

P(gf|...)~ L™  exp[¢(¢)], (13)

where (@) is a quite intricate polynomial of order eight (in
terms of R; G)).

There are several reasons that discourage the use of (13):
(a) P is very sensitive to experimental errors, owing to the high
degree of ¢; (b) P should be a rough approximation of the true
distribution. Indeed, (12) is only valid when S is sufficiently
small, and this is not the case in practical applications: in fact,
the quantities [A;/ql, Z;“/q, Z; /q have the same order of
magnitude as (0?)~! =) y/(u?), which is expected to be a
quite large number; (c¢) The procedure will provide worse
results when more than two wavelengths are used: ¢ shoud be
a very complicated polynomial of order 12 for a three-wave-
length case, and of order 16 for a four-wavelength case.

Two alternatives to the above procedure are indicated
below:

(a) We vary ¢ from zero to 2. For each trial value of ¢,
the values of ¢, ¢ and ¢; are derived (owing to the prior
knowledge of ¢, and ¢, i = 1,2):

N I R
Rysing + Ry sing,, — R, singy,

tan ¢} = ,
¢2 R, cos ¢ + R, cos¢gh — R, cos ¢f
tan o — —R;singf + G, sing,; + R, sin g}
1 = R, cos ¢ + G, cos g, — R, cos ¢’
—R,sing] + G ,sing, + R, sin ¢
tan g5 = 18I @, a2 SM Py a1 SN Y

+ - +
Ry cos ¢ + G cos 9, — R cos @y

The result is the probability density P(¢|...), calculated in
the selected values between zero and 27: standard numerical

+
o P2

ot
T 2n

Figure 1
Probablility contours of the probability distribution (ideal case)

P(of, oF]..).

techniques provide the mean and the variance of the distri-
bution. In particular, ¢, is obtained by calculating

x" = [P(ef]..)cosgf dof,
y" = [P(ef|..)singy dof,
6 =tan"'(y*/x"). (14)

0 is the best estimate of ¢;. The classical figure of merit m",
assessing the reliability of the estimate, is obtained as

mif = (" +y"). (15)

The above procedure (from now on PROC1) does not explore
the full space (¢], 97, ¢F, ¢5) but only a line of it, just the line
around which that probability density is concentrated. To
make a simple (ideal) example, let us consider (see Fig. 1) a
two-dimensional case: P(pf|...) is evaluated from
P(pf, ¢f|...). The plane (¢, ¢7) is explored only along the
full line in Fig. 1, where P(¢], ¢F|...) is concentrated. The
line is very close to ¢ = ¢f: indeed, P(¢f,¢S|...) is
vanishing in the regions where ¢ ~ ¢ is highly violated.
(b) We assume in (9) that

ol =0 =—¢1 =—¢,. (16)
Then,
P(pf|...) ~ al(GD] " exp[Gf cos(pf —61)],  (17)

where
tan g+ ¢1R, singl + ;R sin g, — ¢;G, singy — ¢,G,, sin g
an @] =
! R, cos <pa+1 + ¢, R, cos (p;rz +¢3G, cos ¢ +¢,Gypcos @,
T
=—, 18
5 (s)
G =(T* +B)"?, (19)

¢ = 2[Ry — Ry) + Ai3(Gy — Ry) + 44(G, — R/ q,
€ =2[Ap(Ry — Ry) + 25(Gy — Ry) + 24(G, — Ry)1/q,
c3 =2[A34(Gy — Gy) + A3(R, — Gy) + A5(R, — G/,
¢ = 2[A34(G) — Gy) + ARy — Gy) + Ayu(R, — Gy)l/q.

Equation (17) is a von Mises distribution: it is unimodal, 8/ is
the most probable value of ¢} and Gj is the concentration
parameter.

The two proceduces for phase estimation involve different
approximations. The formulas (17)-(19) are more fascinating:
their application is very easy and they show how the prob-
abilistic estimates depend on the diffraction moduli differ-
ences. However, the assumption (16) is not always valid: it may
be violated mostly when the moduli R, and G, are comparable
with the moduli R and G. Since R, and G, are usually small
with respect to R and G, largest errors in the phase estimates
are expected for small R and G moduli. This is not crucial for
the success of the phasing process.

6. Experimental tests

To check the correctness of our probabilistic approach, we first
applied our conclusive formulas [i.e. equations (14)—(15) and
(17)-(19)] to the calculated (without error) data of 1SRV
(Walsh er al., 1999), space group C222,, a = 63.470, b = 65.960,
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Table 1

1SRV: expected Af’ and f” values for each A value.

A‘ Af/ f//
1.1271 —1.805 0.646
0.9793 —8.582 3.843
0.9791 —7.663 3.841
0.9465 —2.618 3.578
Table 2

SRV calculated data, acentric reflections.

Estimates according to formulas (14) and (15). NR is number of reflections for
which m* > ARG, (|Ag¢|) is the average phase error of the estimates.

ARG NR (1agl) ()
0.00 6345 20.32
0.05 4233 12.51
0.20 1980 831
0.35 1217 6.68
0.50 855 5.56
0.65 586 4.78
0.80 383 3.80
0.95 97 2.29

¢=75.030 A, 1186 non-hydrogen atoms and 3 Se atoms in the
asymmetric unit. The crystal structure solution was originally
undertaken to push MAD to the extreme, that is to check the
feasibility of ultrafast protein crystal structure solution. The
positions of the two Se atoms were found automatically using
a Patterson technique implemented in the program RSPS in
the CCP4 suite (Collaborative Computation Project, Number
4,1994) and refined by the program MLPHARE of the same
CCP4 suite. A subsequent test by CNS (Briinger et al., 1998)
revealed the third Se site, which turned out to be disordered
(B factor refined to 62.4 A%). Multiwavelength data were
collected by Walsh et al. (1999) up to 1.70 A resolution: we
used for our tests the wavelengths A; and the expected par-
ameters Af! and f/ quoted in Table 1. Structure factors were
calculated for the 7589 (centric and acentric) reflections. To
avoid singularities in our probabilistic equations (14)—(15) and
(17)-(19), we assumed e = 1 + (0.1|E_,.|)*>. We note that the
two-wavelength case is algebraically determined in the
absence of errors: therefore, the calculations of the joint
probability distribution P(Ff, F5, Fy, F5 |F, F;) needs the
introduction of the supplementary error variable u to avoid
singularities. The results of our tests are shown in Table 2 for
equations (14) and (15) and in Table 3 for equations (17)-(19):
for both the tables we used the pair A;—A3. In Table 2, we give
the number of reflections with m" > ARG and the corre-
sponding average phase error ({|Ag|) measures the discre-
pancy between estimated and published phases). Errors larger
than 10° are only found at very low values of m*. In Table 3,
we show the average phase error for a number of reflections
selected according to various conditions. The error is larger
than 10° only at very small R; values. The comparison of Table
2 with Table 3 suggests that equations (17)—(19) are more
efficient than (14)-(15): these last equations will not be
employed in the next calculations.

Table 3

1SRV calculated data, acentric reflections.

Estimates according to formulas (17)-(19). NR is the number of phased
reflections under various conditions, {|Ag|)° is the average phase error of the
estimates.

Conditions

R, >0.0 R, >02 R <02
NR 6345 6090 255
(1Ag@]) (°) 2.69 2.37 10.53

Table 4
1SRV experimental data.

Number of phased reflections and corresponding phase errors for the pairs of
wavelengths A—A; accordingly to equations (17)-(19) (rows 2 and 3) and to
MLPHARE (rows 4 and 5)

ij 1-2 1-3 1-4 2-3 2-4 34
NR 7125 7149 7193 7552 7178 7203
ERR(W-ERR) 72 (62) 68 (59) 78 (70) 74 (66) 71(62) 70 (62)
NR 6879 7059 4999 7047 7028 7003
ERR(W-ERR) 70 (60) 66 (55) 88(82) 80(69) 71(61) 65 (54)

Formulas (17)-(19) have been applied to 1SRV experi-
mental data for each pair of wavelengths. In Table 4, we give
the number of phased reflections (NR) and the relative
unweighted and weighted phase errors (ERR and W-ERR,
respectively). The corresponding values obtained by applying
MLPHARE to the experimental data are shown in the last two
lines of the tables. We observe that equations (17)—(19) have
the following properties.

(a) They have been derived without taking into account the
correlations of the errors at different wavelengths. Since such
errors are usually highly correlated, disregarding them
reduces the efficiency of our equations. However, our prob-
abilistic approach can take error correlation into account: in
this case the matrix (5) would no more assume the form of a
block-diagonal matrix.

(b) They have been applied without a previous refinement
of the Af" and f” values quoted in Table 1 and of the occu-
pancy of the Se atoms. Parameter refinement can add effi-
ciency to the formulas but requires the integration of our
approach with a specific refinement program still not available.

In spite of the above two handicaps, the phase errors rela-
tive to (17)—(19) are competitive with those obtained via
MLPHARE. A future paper will be devoted to the n-wave-
length case and the correlation of the errors by fully inte-
grating our approach with a refinement procedure.

7. Conclusions

A new probabilistic approach has been described aiming at
phasing structure factors under the assumption that the
anomalous scattering substructure is known. The two-wave-
length case has been studied and simple and appealing
formulas have been derived. The approach may be easily
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extended to treat the multiwavelength case: this will be the
subject of a future paper.

APPENDIX A

The value of det(4) in equation (4) and the estimate of the
elements of the matrix A~ may be obtained via the following
theorem: if D is a diagonal matrix of order m whose ith
diagonal element is d; and g is an m x 1 column matrix, then

det(D + gg) = dewD)|1 + 3-g?/d ]
i=1

Let us denote

G =[(¢f)"2 ()2 ()T (&),

dy = (o7 V/ef . d, = (07 ) /¢S . ds = (07)’ /e . dy = (05)* /€5
Then [see (5)],

072052072052 1 1 1 1
det(Q,) = 2172 1 Y2 ( >

I+ —5+—=+=+—=
FoTo o +2 +2 -2 —2
eleyere; o] 0,° o] 0,

By analogy denote
G =[(e)"2 ()" —(er) ™% —(e) 7]
d, = (o7 /el d, = (07 ) /e3 . ds = (07)’ /e . dy = (05)* /€5
Then
det(Q,) = det(Q,)
and
det(2) = [det(Q,)T.

The elements Aj; of the matrix k' may be obtained by
observing that

-1

k—l — Ql_l 0
0 >

Accordingly,
Ay = e“ll/% Ay = 62+)»22/q,
Az = ey Ay/q, Ay =& hu/q,

A= (6?—@;—)1/2)\12/5]» Ay = (ETeT)”ZMs/q,
Ay = (e?re;)l/zk14/4» Ay = (e;e;)uz)%/q’
Ay = (6;35)1/2)\24/4» Ay = (6;65)1/2%4/%

Ayjgpi=4N; for i=1,...,4,
Nse = Aqps As; = =Nz, Asg=—Ayy,
N = =Ny, Agg=—Ny  NAgg=—Ag,
q=01’0y’01’0y" + 0770770, + 010y 0y
+ 01+2 01_2 02—2 + ‘71+2 ‘71_2 02+2’
hy = 077057057 + 0770y + 0770y + 037057,

2 -2 -2 2 _—2 2 _—2 -2 -2
)‘zzzaral ) +U1+01 +‘71+02 +o0°0,7,

42 42 2 +2 42 +2 -2 +2 2
Ay =070, 0,  +0i 0,  +0i0," +0,°0,°,

22 =2 A2 A2 A2 2 42 =2
Ay =0,"0y°0," +0,°0;" +07"0; "+ 0,70, ",

_ -2 -2 _ +2 -2

Ap=—0170,7, A3=—0;,0,",

_ +2 -2 _ +2 -2

Mg =—07"01", Ay =-—0]0,,

_ +2 -2 _ +2 42

Ay =—01"01", Ay=—0"0y".
APPENDIX B

From

[(Af — A7) — (A — AL
= (AT — AL + (A — AL —2(Af — A[)(AT — A)),
[(Bf —B}) — (By —BL)Y
= (B — Byy)’ +(Bf — Bj)” —2(Bf — Bj)(Bf — B),
the relation
AT —ALNAS —AD) + (B — BL)B] — B

= (A — AL + (AT — ALY + (B — B}))

al
+(Bf =B, — (AT —Af) —(AF — AL
—[(Bf —B}) — (B — BRI

Similarly, from

(AT —A) — (AT — AT

= (AT AL + (AT — A, —2AT — A} (AT — Ay,
[(Bf — B}) + (By — Byl
= (Bf — B,))’ + (B] — B,)’ + 2(Bf — B})(B] — By)).

the relation

2[(AT — AJ AT — Ay) — (Bf — BL)(BT — B,)]
= (AT — ALY +(AT — ALY + (Bf — B}
+ By — B, —[(AT —A}) — (A7 — AP
—[(Bf —B})) — (By — BT
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